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Abstract—The reaction of 2-(diphenylmethylene)thietan-3-one (2) with 1,2,4,5-tetrazines (3a–c) in KOH/MeOH/THF gives 4H-pyr-
azolo[5,1-c]thiazines (7a–c). This novel condensation reaction proceeds via the intermediacy of an 8-(diphenylmethylene)-2H-1,4,5-
thiadiazocin-7(8H)-one (5), which undergoes a multi-step rearrangement including a rare anti-Michael addition.
� 2006 Elsevier Ltd. All rights reserved.
The synthesis of multiply-substituted pyrazoles has
received considerable attention because of their diverse
applications in both the pharmaceutical and the agro-
chemical industries.1 In a serendipitous way, we became
interested in the synthesis of fully substituted pyrazoles
and recently reported the finding that thietanone l re-
acts, under mild basic conditions in an alcoholic solvent,
with 1,2,4,5-tetrazines 3a–c to yield pyrazole 6a–c
(Scheme 1).2 We hypothesized that the formation of
pyrazole 6 proceeded through the ring contraction/
desulfurizaton of intermediate 5. This hypothetical 8-
benzylidene-2H-1,4,5-thiadiazocin-7(8H)-one forms in
analogy to the reaction of cyclobutanone with 3, which
under similar conditions yields isolable 1,2-diazocin-4-
ones (5 0 in Scheme 1).3 It is believed that this multi-step
transformation of 5 to 6 is initiated by the Michael addi-
tion of an alkoxide ion (generated from solvent;
R2 = CH3, CH2CH3, CH2CH2OH) to the benzylidenone
moiety.

Based upon these insights, the purpose of this work was
to manipulate the starting thietanone in such a way that
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the resulting 1,4,5-thiadiazcinone derivative (5) would
be stable. It was envisaged that introduction of an addi-
tional phenyl ring at the exo-cyclic double bond (e.g.,
thietanone 2) would lead to isolable analogs of 5
(R1 = C6H5) by retarding the rate of alkoxide addition
to the now more hindered Michael acceptor. The
requisite 2-(diphenylmethylene)thietan-3-one (2) was
prepared4 as outlined in Scheme 2.

In the event, reaction of 2 with 1,2,4,5-tetrazine 3a deliv-
ered a stable product consistent in molecular weight
with the targeted 1,4,5-thiadiazcinone 5a (R1 = C6H5).
However, there were a number of surprising findings
in the spectral data of this product vis-à-vis the antici-
pated 1,4,5-thiadiazcinone—principal among these
being the presence of an unexchangeable, sharp one pro-
ton singlet in its 1H NMR at 5.85 d in addition to the
absence of methylene protons as confirmed by the lack
of 13C NMR alkyl carbons holding protons. 1,2,4,5-
Tetrazines 3b and 3c gave similar products. Fortunately,
the product from the reaction of 2 with 3c gave X-ray
crystallographic quality crystals, which established the
product as 4H-pyrazolo[5,1-c]thiazine 7c (Fig. 1).

4H-Pyrazolo[5,1-c]thiazines 7a–c are fully substituted
pyrazoles wherein a sulfur-containing heteroring occu-
pies two positions on the pyrazole ring. We conjecture
that 2H-1,4,5-thiadiazocin-7(8H)-one is indeed formed
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Figure 2. A stereoview of the preferred conformation of 4H-1,4,5-
thiadiazocin-7(8H)-one 8.
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Scheme 1. 1,4,5-Thiadiazocinones (5)! pyrazoles (6; R1 = H) and
pyrazolo[5,1-c]thiazines (7; R1 = C6H5).

Figure 1. Atomic displacement ellipsoid plot (70% probability) of 7c.
With the exception of S5 and C6, the central, fused heterocycle is
planar. S5 and C6 are 1.11 and 0.54 Å out of plane, respectively.
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Scheme 2. Preparation of thietan-3-one 2.
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and subsequently tautomerizes to 4H-1,4,5-thiadiazo-
cin-7(8H)-one (e.g., 5a! 8 as outlined in Scheme 3).
This enamine intermediate then undergoes a transannu-
lar anti-Michael addition to the diphenylmethylenone
moiety to give 9. The ring opening via thiolate elimina-
tion delivers 1H-pyrazol-4(5H)-one 10 and the subse-
quent intramolecular thiolate Michael addition gives
the observed 4H-pyrazolo[5,1-c]thiazine (7a). Clearly,
our switch from benzylidenone-containing 1 to diphen-
ylmethylenone-containing 2 met the initial objective of
precluding alkoxide Michael addition and subsequent
formation of pyrazole 6. However, the inherent steric
encumbrance of the diphenylmethylenone moiety drives
the conversion of, for example, [5a] to 7a, the thermo-
dynamic product of this reaction.

As illustrated in Figure 2, enamine 8 adopts a crown-like
conformation in which steric interactions between the
diphenylmethylene and carbonyl moieties are minimized
by causing the C@C and C@O to become significantly
noncoplanar. Furthermore, this conformation places
the enamino nitrogen (e.g., N4 in 8) in close proximity
to C8 and hence well positions it for a transannular
anti-Michael addition to form the pyrazolo[5,1-b]thi-
azol-7(7aH)-one] intermediate 9. The ring opening to
10 and subsequent Michael addition delivers 7. This
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anti-Michael attack by the enamino nitrogen at C8 is, to
some extent, analogues to the recent synthesis of some
annulated pyrazoles from a cyclocondensation of aryl-
hydrazines with a-oxoketene.1a It is of relevance to point
out that anti-Michael addition examples predominantly
involve additions to triple bonds5 with anti-Michael
additions to double bonds being quite rare.6 While we
were preparing this manuscript, Suzuki and co-workers
reported another example of an anti-Michael addition
reaction to a C,C-double bond.6c Our finding which,
to our knowledge constitutes the third report of an
anti-Michael addition to a double bond, bears a close
resemblance to the reported addition of n-BuLi to enam-
ido 11 to give 12 (Scheme 4).6a

In conclusion, we have demonstrated (i) a synthesis of
the unknown 4H-pyrazolo[5,1-c]thiazine heterocycle,
(ii) the second example of a transannular reaction
in an eight-membered S,N,N-heterocycle,7 and (iii)
discovered another example of the rare anti-Michael
addition to a C,C-double bond.

Representative procedure for 2 + 3a–c! 7a–c: Prepara-
tion of 2,7-bis(4-bromophenyl)-4,4-diphenyl-4H-pyr-
azolo[5,1-c][1,4]thiazin-3-ol (7b). To a mixture of
thietanone 2 (45 mg, 0.18 mmol) and tetrazine 3b
(140 mg, 0.36 mmol) in THF (6 mL) was added 5%
KOH/MeOH (2 mL). The mixture was stirred for
10 min at which time TLC showed complete disappear-
ance of thietanone 2. Another three portions of thieta-
none (3 · 0.18 mmol) were added over a 5 min
interval. The mixture was then diluted with water and
made slightly acidic with 3 N HCl (in case of the reac-
tion with 3,6-di-2-pyridyl-[1,2,4,5]tetrazine 2c, the
work-up was not made acidic) and extracted with
DCM (3·). The combined organic layer was washed
with brine, dried over Na2SO4, and evaporated to dry-
ness. Flash chromatography with 10–15% EtOAc/
hexane delivered 7b as a brown oil (114 mg, 52 %).

Compound 7a: (56%) IR (neat) 3527 cm�1. 1H NMR
(CDCl3) d 7.9 (2H, br d, J = 8.4 Hz), 7.4 (18H, m), 5.9
(1H, s), 3.1 (1H, br s). 13C NMR (CDCl3) d 57.2,
103.7, 125.0, 126.8, 127.9, 128.2, 128.5, 128.8, 128.9,
129.1, 129.6, 132.1, 134.4, 135.7, 139.3, 139.9, 140.3.

Compound 7b: (52%) IR (neat) 3522 cm�1. 1H NMR
(CDCl3) d 7.7 (2H, d, J = 8.8 Hz), 7.4–7.3 (14H, m),
7.2 (H, d, J = 8.8 Hz), 5.8 (1H, s), 3.1 (1H, br s). 13C
NMR (CDCl3) d 57.8, 104.6, 122.0, 123.0, 125.1,
128.3, 129.1, 129.2, 129.5, 130.3, 131.0, 131.5, 131.7,
133.1, 135.8, 138.1, 139.0, 140.0.

Compound 7c: (52%) IR (neat) H-bonded OH 3400–
3300 cm�1 (w). 1H NMR (CDCl3) d 8.6 (1H, d,
J = 4.8 Hz), 8.3 (1H, d, J = 4.8 Hz), 7.8 (1H, d,
J = 8.0 Hz), 7.7 (2H, m), 7.6 (1H, d, J = 8.0 Hz), 7.4
(4H, m), 7.3–7.2 (7H, m), 7.1 (1H, m), 6.8 (1H, s). 13C
NMR (CDCl3) d 57.6, 110.4, 119.3, 122.4, 123.1,
123.7, 124.7, 128.1, 128.2, 129.8, 135.8, 136.1, 137.0,
137.5, 140.0, 141.1, 147.3, 149.4, 151.5, 153.7. X-ray
data: colorless, triclinic, space group P�1; a = 6.5984(3),
b = 9.4762(5), c = 18.8062(10) Å, a = 86.689(1), b =
87.781(1), c = 71.694(1)�, V = 1114.27(10) Å3, T =
93(1) K, Z = 2; 7150 reflections; R = 0.0418 for 6006
with I > 2r(I), R = 0.0515 for all. Data collection:
Bruker SMART Apex 2 diffractometer. Solution and
refinement: SHELXS97SHELXS97 and SHELXL97SHELXL97.8
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